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Unified transceiver API

e CREW uses a large variety of transceiver hardware

— True SDR nodes (Ettus Research USRP, WARP)
— Spectrum sensors (SNE-ESHTER, Imec Sensing Engine)

— [Low-power, narrow band radios on embedded devices]

e Each transceiver has its own native interface




Unified transceiver API (cont.)

 To perform an experiment, testbed users:

- develop an application running on nodes,
- remotely upload and start the application and

- perform measurements using test instrumentation,

e One API for all radio hardware would simplify

— application development for testbed users and

— portability of an experiment between testbeds
« WINNF Transceiver Facility
- selected as an API for SDR nodes early in the project,

— could be also used for access to spectrum sensors?
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SDR VS. Spect. sensor

e RX and TX

» Continuous reception/
unlimited burst length

 Frequency agile,
low-latency

e Fast turn on/turn off

 Optimized for signal
processing in software

RX only

Limited butfer for a
sample-process cycle

Uses a predetermined
sequence

Continuous scanning of
a frequency band

Optimized for on-board
signal processing



o, VESNA SNE-ESHTER )

CREW &

B Compact, low-cost spectrum sensor for VHF/UHF frequencies
e Selectable sensing bandwidths from 8 MHz to 500 kHz
e Baseband signal capture (up to 2 Msample/s, 25000 samples)
e Statistical processing on sensor node CPU (covariance, Eigenv. det.)
e Low-latency programmable hardware trigger for energy detection
e Compressive and multi-antenna, multi-channel sensing

SNE-ESHTER

(embedded sensing hardware for TVWS experimental radio)

IA spectrum sensor
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RF analog front-end
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Typical setup in a testbed

SNE-ESHTER Host PC running
(RF analog front-end) GNU/Linux
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VESNA Sensor Node Core  RS-232 serial
(56 MHz ARM CPU, ADC)  (or Ethernet with TCP/IP)
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Implementation overview

o C++ library, linked with user application
- Transceiver Facility specification is language agnostic.
- When changing hardware, just link with a different library.
e Running on the Host PC

— No need to reprogram sensor's firmware,
— but limited by the serial interface, host PC clock.
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VESNA SNE-ESHTER RS-232 Host PC



Latency benchmarks

o From receiveStartTime event to pushBBSamples call

1441102358141563854 ns

createReceiveCycleProfile() enter
1441102358141944585 ns

createReceiveCycleProfile() exit
1441102358625030773 ns

pushBBSamplesRX() enter
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Latency measurement with scope

atopped Single Seq 26 May 15 11:09:45

createReceiveCycleProfile() ; ; ; ;
receiveStartTime event B pushBBSamplesRX() §

sensor starts sending
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Histogram of measurements

N=100, x =570 ms, 0 = 5.4 ms
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« Measured using the host PC clock

— inaccurate due to task switching, etc.



Analysis

RS-232 send configuration LO tune sampling
3 ms 5ms 1 ms

frontend power-up, calibration RS-232 send samples
290 ms

time

 Latency approximately 570 ms
(for 2048 samples)

- Frontend slow to resume from power saving mode.

- Sending ASCII formatted samples over 576 kbps
RS-232 connection - latency depends on packet size

e Blind time of sensor in this mode > 99.5%

-



Improving latency

* Keep front-end constantly powered-up
— No calibration for each RX cycle, but increased power usage.
* Send samples in binary format instead of ASCII

— Higher bitrate due to lower CPU usage, no ASCII overhead,
- but complicates sensor interface, backwards incompatible.
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Exploiting on-board processing

Transceiver: :ULong packet size = 2048;
Transceiver: :UShort tuning preset = 2;
Transceiver: :Function func = Transceiver::covarianceFunction;

device->receiveChannel.createReg@iveCycleProfile(
start, stop, packet size;/tuning preset, freq, func);

nullFunction,
covarianceFunction,
fftFunction,
Transmit Channel
Base-band RF
N Signal Signal
: : Receive Channel
Application [€——
1
processed Real-time

baseband signal control



Timing information

receiveStartTime SampleNumber - f_

A,
s \
Spectrum Sensor packet 2 | packet 2
SDR packet I packet I packet I packet I packet I pack

» Add a timestamp/stream offset to BBPacket class

- defines timing in case of sample loss.

class BBPacket
{
public:
ULong SampleNumber;
BBSample* packet;
ULong time;
BBPacket (ULong inSamplesNumber, BBSample* inPacket);

}i




Conclusions

Transceiver Facility has been adopted for spectrum
sensors in CREW project testbeds.

Latency with SNE-ESHTER hardware is ~570 ms.

Support for spectrum sensors could be improved
with minor changes of Transceiver Facility.

- Support signal processing in hardware,
- add timing information to packets of signal samples.

Time will tell whether this abstraction is useful for
use in testbeds.
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Questions?

Tomaz Solc
tomaz.solc@ijs.si

http://www.crew-project.eu
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