Adopting WINNF Transceiver
Facility for Spectrum Sensors

Tomaz Solc, Jozef Stefan Institute




CREW platform

heterogeneous ISM
@ Ghent (iMinds)

IMEC sensing agent

TV-bands
@ Dublin (TCD)

IRIS SW radio

LTE-advanced
@ Dresden (TUD)

SEVENTH FRAMEWORK

PROGRAMME

wireless sensor
@ Berlin (TUB)

ISM/TVWS outdoor
@ Ljubljana (JSI)

TCS multi-antenna LTE detection

IRIS GPP-based
software radio platform

EEXE Comreg spectrum licenses

BEE @ BEE2 FPGA platform
@ USRP software radio

) VESNA platform on
o light pole

@ IEEE 802.11 ﬁ

9 IEEE 802.15.1
@ IEEE 802.15.4

oy
Ite  LTE-advanced
O EyesIFX nodes

G CR database

[/S7] 'MEC Sensing Agent
UHF/VHF TV sensing

[/sr] 1SM bands sensing
By TCS Multi-antenna LTE detection

’J WiSpy Spectrum analyzer
= |nterconnection of portals

. Interconn. between testbed elements




Unified transceiver API

e CREW uses a large variety of transceiver hardware

— True SDR nodes (Ettus Research USRP, WARP)
— Spectrum sensors (SNE-ESHTER, Imec Sensing Engine)

— [Low-power, narrow band radios on embedded devices]

e Each transceiver has its own native interface




Unified transceiver API (cont.)

 To perform an experiment, testbed users:

- develop an application running on nodes,
- remotely upload and start the application and

- perform measurements using test instrumentation,

e One API for all radio hardware would simplify

— application development for testbed users and

— portability of an experiment between testbeds
« WINNF Transceiver Facility
- selected as an API for SDR nodes early in the project,

— could be also used for access to spectrum sensors?




WInnF Transceiver Facility

Waveform application Tran;lcjfiver Transceiver
A A
Ny 7 N\
<> mac  |e»] Modem |e—i—p] DAl gy ]  Analog <—j/
: frontend frontend

(Deployment) *

R/W properties access

Base-band
Signal Signal

Real-time
control

" E. Nicollet, et al.: Transceiver Facility Specification



SDR VS. Spect. sensor

e RX and TX

» Continuous reception/
unlimited burst length

 Frequency agile,
low-latency

e Fast turn on/turn off

 Optimized for signal
processing in software

RX only

Limited butfer for a
sample-process cycle

Uses a predetermined
sequence

Continuous scanning of
a frequency band

Optimized for on-board
signal processing



o, VESNA SNE-ESHTER )

CREW &

B Compact, low-cost spectrum sensor for VHF/UHF frequencies
e Selectable sensing bandwidths from 8 MHz to 500 kHz
e Baseband signal capture (up to 2 Msample/s, 25000 samples)
e Statistical processing on sensor node CPU (covariance, Eigenv. det.)
e Low-latency programmable hardware trigger for energy detection
e Compressive and multi-antenna, multi-channel sensing

SNE-ESHTER

(embedded sensing hardware for TVWS experimental radio)

IA spectrum sensor

2, Institute JoZef Stefan, Slovenia

1z solc@ijs.si
+386 1 477 3699

&)
-, < Department of
5 )L Communication
AN Systems CRE




RF analog front-end

42 - 870 MHz single-conversion, low-IF receiver
analog energy detector

i

LOout LOin < D/A

logarithmic amplifier
AD8307 IRQ
trigger
> A/D [—>

!

|

I TDA18219HN PLD |«@——
antenna | I 1000/500 kHz, 10th order dual mode/

J \ yanN ~ : interleaved . CP U
(== S (X~ — —

| LNA mixer filter :

“““ B AID —>
loop-through T IF out baseband out G P I O

EEPROM |« <> <>
digital control bus I 2 C




Typical setup in a testbed

SNE-ESHTER Host PC running
(RF analog front-end) GNU/Linux

. e
4
I -
........................
i L, ¢
L 4

-ammm m = s

.+*" SNE-ESHTER (slave) a7
1
SNE-ESHTER (master) /7

o
f T

VESNA Sensor Node Core  RS-232 serial
(56 MHz ARM CPU, ADC)  (or Ethernet with TCP/IP)




SNE-ESHTER

Analog front-end

Throughputs

SNC (STM32F103) SNR-ETH
LL
Cortex-M3 CPU 64 kB =
f= 56 MHz SRAM G
c
~ 2 Mbit/s + + Q
Y O
(throughput for . 9
calculating 25 > U SART it A Daliadl
element sample

covariance vector) 730 kbit/
it/s

(Ethernet
connection)

BUS

32 Mbit/s 576 kbit/s , ,
(direct serial

connection)

A/D > <« USART = >

Host PC




Implementation overview

o C++ library, linked with user application
- Transceiver Facility specification is language agnostic.
- When changing hardware, just link with a different library.
e Running on the Host PC

— No need to reprogram sensor's firmware,
— but limited by the serial interface, host PC clock.

Transceiver || Waveform
Hardware _Sensor - p- | TANSCEIVE avetor
firmware Facility application

VESNA SNE-ESHTER RS-232 Host PC



Latency benchmarks

o From receiveStartTime event to pushBBSamples call

1441102358141563854 ns

createReceiveCycleProfile() enter
1441102358141944585 ns

createReceiveCycleProfile() exit
1441102358625030773 ns

pushBBSamplesRX() enter

3
PC

@ ce ol

X

log

RX
SNE-ESHTER ,ﬁ
SNC /




Latency measurement with scope

atopped Single Seq 26 May 15 11:09:45

createReceiveCycleProfile() ; ; ; ;
receiveStartTime event B pushBBSamplesRX() §

sensor starts sending
signal samples

RS-232 RX

RS-232 TX

M 100ms T25kSs 2.0pzht  1.0s
L ~ 100rn%

B Chl ~ 32Y




Histogram of measurements

N=100, x =570 ms, 0 = 5.4 ms

25
T S o 1 0 O e S
S EEECEE S o B e e

-E‘ Z . . ; . . .

-

O

v f : : f : : :
10 e —t o R 1
" NS HRS N O B T

-

0 1 | ) 1
550 555 560 565 570 575 580 585 590
time from receiveStartTime event to pushBBPacketRX call [ms]

« Measured using the host PC clock

— inaccurate due to task switching, etc.



Analysis

RS-232 send configuration LO tune sampling
3 ms 5ms 1 ms

frontend power-up, calibration RS-232 send samples
290 ms

time

 Latency approximately 570 ms
(for 2048 samples)

- Frontend slow to resume from power saving mode.

- Sending ASCII formatted samples over 576 kbps
RS-232 connection - latency depends on packet size

e Blind time of sensor in this mode > 99.5%

-



Improving latency

* Keep front-end constantly powered-up
— No calibration for each RX cycle, but increased power usage.
* Send samples in binary format instead of ASCII

— Higher bitrate due to lower CPU usage, no ASCII overhead,
- but complicates sensor interface, backwards incompatible.

62 ms

A
4 A\

frontend power-up, calibration RS-232 send samples
290 ms

_J
v
270 ms

f




Exploiting on-board processing

Transceiver: :ULong packet size = 2048;
Transceiver: :UShort tuning preset = 2;
Transceiver: :Function func = Transceiver::covarianceFunction;

device->receiveChannel.createReg@iveCycleProfile(
start, stop, packet size;/tuning preset, freq, func);

nullFunction,
covarianceFunction,
fftFunction,
Transmit Channel
Base-band RF
N Signal Signal
: : Receive Channel
Application [€——
1
processed Real-time

baseband signal control



Timing information

receiveStartTime SampleNumber - f_

A,
s \
Spectrum Sensor packet 2 | packet 2
SDR packet I packet I packet I packet I packet I pack

» Add a timestamp/stream offset to BBPacket class

- defines timing in case of sample loss.

class BBPacket
{
public:
ULong SampleNumber;
BBSample* packet;
ULong time;
BBPacket (ULong inSamplesNumber, BBSample* inPacket);

}i




Conclusions

Transceiver Facility has been adopted for spectrum
sensors in CREW project testbeds.

Latency with SNE-ESHTER hardware is ~570 ms.

Support for spectrum sensors could be improved
with minor changes of Transceiver Facility.

- Support signal processing in hardware,
- add timing information to packets of signal samples.

Time will tell whether this abstraction is useful for
use in testbeds.



SN ES

Questions?

Tomaz Solc
tomaz.solc@ijs.si

http://www.crew-project.eu



	Slide 2
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 12
	VESNA SNE-ESHTER
	Slide 14
	Slide 15
	Slide 17
	Slide 20
	Slide 23
	Slide 24
	Slide 25
	Benchmarks
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

