
The research leading to these results has received funding from the European Union's
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°258301 (CREW project).

Adopting WINNF Transceiver
Facility for Spectrum Sensors

Tomaž Šolc, Jožef Stefan Institute

Unified transceiver API

● CREW uses a large variety of transceiver hardware
– True SDR nodes (Ettus Research USRP, WARP)

– Spectrum sensors (SNE-ESHTER, Imec Sensing Engine)

– [Low-power, narrow band radios on embedded devices]

● Each transceiver has its own native interface

Unified transceiver API (cont.)
● To perform an experiment, testbed users:

– develop an application running on nodes,

– remotely upload and start the application and

– perform measurements using test instrumentation.

● One API for all radio hardware would simplify
– application development for testbed users and

– portability of an experiment between testbeds

● WINNF Transceiver Facility
– selected as an API for SDR nodes early in the project,

– could be also used for access to spectrum sensors?

WInnF Transceiver Facility

MAC Modem Analog
frontend

Digital
frontend

Waveform application TransceiverTransceiver
API

1 E. Nicollet, et al.: Transceiver Facility Specification

1

SDR vs. Spect. sensor

● RX and TX
● Continuous reception/

unlimited burst length

● Frequency agile,
low-latency

● Fast turn on/turn off

● Optimized for signal
processing in software

● RX only
● Limited buffer for a

sample-process cycle

● Uses a predetermined
sequence

● Continuous scanning of
a frequency band

● Optimized for on-board
signal processing

VESNA SNE-ESHTER

■Compact, low-cost spectrum sensor for VHF/UHF frequencies
● Selectable sensing bandwidths from 8 MHz to 500 kHz
● Baseband signal capture (up to 2 Msample/s, 25000 samples)
● Statistical processing on sensor node CPU (covariance, Eigenv. det.)
● Low-latency programmable hardware trigger for energy detection
● Compressive and multi-antenna, multi-channel sensing

SNE-ESHTER
(embedded sensing hardware for TVWS experimental radio)

SNE-ESHTER
(embedded sensing hardware for TVWS experimental radio)

RF analog front-end
42 – 870 MHz single-conversion, low-IF receiver
analog energy detector

Typical setup in a testbed

SNC

SNE-ESHTER (master)

SNE-ESHTER (slave)

PC

Host PC running
GNU/Linux

RS-232 serial
(or Ethernet with TCP/IP)

VESNA Sensor Node Core
(56 MHz ARM CPU, ADC)

SNE-ESHTER
(RF analog front-end)

Throughputs

Implementation overview
● C++ library, linked with user application

– Transceiver Facility specification is language agnostic.

– When changing hardware, just link with a different library.

● Running on the Host PC
– No need to reprogram sensor's firmware,

– but limited by the serial interface, host PC clock.

Waveform
application

Transceiver
Facility

Sensor
firmware

Hardware

Host PCVESNA SNE-ESHTER RS-232

Latency benchmarks

● From receiveStartTime event to pushBBSamples call

PC

SNC

SNE-ESHTER
TXRX

1441102358141563854 ns
createReceiveCycleProfile() enter

1441102358141944585 ns
createReceiveCycleProfile() exit

1441102358625030773 ns
pushBBSamplesRX() enter

...

log

Latency measurement with scope

Histogram of measurements

● Measured using the host PC clock
– inaccurate due to task switching, etc.

● Latency approximately 570 ms
(for 2048 samples)
– Frontend slow to resume from power saving mode.

– Sending ASCII formatted samples over 576 kbps
RS-232 connection – latency depends on packet size

● Blind time of sensor in this mode > 99.5%

Analysis

frontend power-up, calibration
290 ms

RS-232 send configuration
3 ms

RS-232 send samples
270 ms

LO tune
5 ms

sampling
1 ms

time

● Keep front-end constantly powered-up
– No calibration for each RX cycle, but increased power usage.

● Send samples in binary format instead of ASCII
– Higher bitrate due to lower CPU usage, no ASCII overhead,
– but complicates sensor interface, backwards incompatible.

frontend power-up, calibration
290 ms

RS-232 send samples
270 ms

Improving latency

53 ms53 ms

270 ms

62 ms

Exploiting on-board processing

processed
baseband signal

...
Transceiver::ULong packet_size = 2048;
Transceiver::UShort tuning_preset = 2;
Transceiver::Function func = Transceiver::covarianceFunction;

device­>receiveChannel.createReceiveCycleProfile(
start, stop, packet_size, tuning_preset, freq, func);

nullFunction,
covarianceFunction,
fftFunction,
...

Application f(x)

Timing information

class BBPacket
{

public:
ULong SampleNumber;
BBSample* packet;
ULong time;
BBPacket(ULong inSamplesNumber, BBSample* inPacket);

};

● Add a timestamp/stream offset to BBPacket class

– defines timing in case of sample loss.

packet ? packet

receiveStartTime SampleNumber · f
s

?

packet packet packet packet packet packet

Spectrum Sensor

SDR

Conclusions

● Transceiver Facility has been adopted for spectrum
sensors in CREW project testbeds.

● Latency with SNE-ESHTER hardware is ~570 ms.

● Support for spectrum sensors could be improved
with minor changes of Transceiver Facility.
– Support signal processing in hardware,

– add timing information to packets of signal samples.

● Time will tell whether this abstraction is useful for
use in testbeds.

Questions?

Tomaž Šolc
tomaz.solc@ijs.si

http://www.crew-project.eu

	Slide 2
	Slide 5
	Slide 7
	Slide 8
	Slide 9
	Slide 12
	VESNA SNE-ESHTER
	Slide 14
	Slide 15
	Slide 17
	Slide 20
	Slide 23
	Slide 24
	Slide 25
	Benchmarks
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

